FireGrid
 -Predicting fire development using computer simulations

Sung-Han Koo
BRE Centre for Fire Safety Engineering University of Edinburgh

Context

- Lack of information for fire-fighters, occupants, for research
- Predicting fire development is extremely challenging due to complexity.
- Precise values of input parameters are difficult to define
- Computational cost of modelling real-world fires in detail is prohibitively expensive.

Context

Abundant sensor resources

- Increase in intelligent buildings
- Increase in sensors
- Increase in information

Linking sensor and computer simulation

Context

Architecture of FireGrid system

How it works

Approach so farr . . .

Demonstration

What we did

What is CRISP?

- Computation of Risk Indices by Simulation Procedures
- Simulation of the entire fire 'system'
- Monte-Carlo method

What we did

Randomization

- Changing format of input parameters

Parameter	Mean value	Standard deviation
Maximum radius of burning surface (m)	3.0	1.0
Height of burning surface (m)	0.5	0.2
Initial fuel load (kg)	200	100
Fuel at onset of burnout (kg)	50	10
Rate of flame spread (m/s)	0.003	0.002
Flashover threshold $1\left({ }^{\circ} \mathrm{C}\right)$	500	100

What we did

Randonjzation

What we did

Goodness-offitt test

-Chi-squared equation
-Error

$$
\chi^{2}=\sum_{i=1}^{n} \frac{\left(O_{i}-E_{i}\right)^{2}}{\varepsilon^{2} \text { TOT }, i}
$$

$$
\varepsilon_{\text {TOT }}^{2}=\varepsilon_{\text {sensor }}^{2}+\varepsilon_{\text {model }}^{2}
$$

-Applying to fire model

$$
\chi^{2}=\sum_{t}^{m} \sum_{i=1}^{n} \frac{\left(O_{t, i}-E_{t, i}\right)^{2}}{\varepsilon^{2}{ }_{\text {TOT }, t, i}}
$$

What we did

Goodness-offitt test

What we did

Bayesian inference

$$
P(A \mid B)=\frac{P(B \mid A) \cdot P(A)}{P(B)}
$$

$$
P\left(A_{j} \mid B_{i}\right)=\frac{P\left(B_{i} \mid A_{j}\right) \cdot P\left(A_{j}\right)}{\sum_{k} P\left(B_{i} \mid A_{k}\right) \cdot P\left(A_{k}\right)}
$$

$P\left(A_{j} \mid B_{i}\right)=L\left(B_{i} \mid A_{j}\right) \cdot P\left(A_{j}\right)$

What we did

Real time feed back process

Fire detection

What we did

Full scale fire test

- HPC (ECDF - The Edinburgh Compute and Data Facility)
- High-performance cluster of servers (1456 processors)
- Processors:
- 4 instances of CRISP
- 1 Pre-processor

Results

Predictions
——Sensor measurement
prediction
Current time

eral - 29/10/2008 12:01:27

Cameral - $29 / 10 / 200812: 15: 27$

CameraZ - 29/10/Z008 12:25:12

Camera4 - 29/10/2008 12:33:36

Cemera4 - 29/10/2008 12:42:00

Applications

Emergency information device

Applications

Egress gujide system

Applications

Red box

