

<mark>bre</mark>trust ARUP

Prediction of toxic species in fires

Stephen Welch & Sreebash C Paul

School of Engineering The University of Edinburgh

ire

eat

Why bother?

• Fire – human interface

- Toxic gases lead to incapacitation, and death
 - Asphyxiant gases: CO, HCN, Low O₂, CO₂
- Extending scope of fire safety engineering
 - Forensics
 - Supplementing testing
 - Design
- Existing "models" inadequate
 - Challenged by complexity of phenomena
 - Lack of knowledge of required inputs

CO fundamentals

- Experimental characterisation
 - Correlation to "equivalence ratio", φ
 - Measure of fuel-air balance

 $\phi < 1$ lean $\phi = 1$ stoichiometric

 $\phi > 1$ rich

Hood experiments - continued

Hood experiments

φ.

Hood experiments - continued

Fuel	Formula	CO volume[%]	CO yield [g/g]
Acetone	C_3H_6O	4.4	0.30
Methanol	CH ₃ OH	4.8	0.24
Ethanol	C_2H_5OH	3.5	0.22
Isopropanol	$C_{3}H_{7}OH$	2.4	0.17
Propane	C_3H_8	1.8	0.23
Propene	C_3H_6	1.6	0.20
Hexane	$C_{6}H_{14}$	1.6	0.20
Toluene	$C_7 H_8$	0.7	0.11
Polyethylene	- <i>CH</i> ₂ -	3.0	0.19
РММА	$-C_{5}H_{7}O_{2}-$	3.0	0.19
Ponderosa Pine	$C_{0.95}H_{2.4}O$	3.2	0.14

Beyler, C. (1983) PhD thesis, Harvard Uni.

Hood experiments - continued

Compartment fires

- Reduced scale enclosures
 - Rasbash & Stark (1966)
 - 0.9m cubic enclosure, cellulosics
 - CO concentrations ≈ 10%
 - Bryner, Pitts, et al.
 - Reactions in layer
 - O₂ mixing
 - Residence time
 - Scale!
 - Equilibrium

Solid-phase pyrolysis

Time, s

Essential CO mechanisms

- Formation in plume, quenched
 - Function of fuel
 - Affected by temperature
- Reaction with entrained air
- Continued reaction in layer
- Pyrolysis
 - e.g. wood in a rich upper layer
- Smoke interaction
- Other species
 - Affect toxicity in general

Modelling issues

- Air entrainment into rich upper layer
 - Correlations for yield will fail
 - Need sufficient grid resolution near interface
- Solid-phase cellulosic pyrolysis
 - Couple with a flame spread model
 - Multi-fuel issue is a problem!
- Approach to equilibrium chemistry
 - Long time-scales require explicit finite-rate chemistry
- Smoke, etc.
 - Engineering models needed

CFD-based models

- Array of proposed approaches
 - Review of models
 - Complexity
 - Empiricism
 - Computational costs
 - Comprehensive
 - Turbulence
 - Combustion
 - Chemistry
 - Soot
 - Radiation

Huge range!

#	Model name/description	Chemistry	CFD code	Computational cost	Test cases	Advantages	Disadvantages	
1.	LER (Local Equivalence Ratio) model Wang <i>et al</i> , University of Greenwich (1)	None (EDM)	SMARTFIRE CFX 42 (RANS)	• Low	Range of reduced- scale and full-scale fire experiments (including corridors)	 Simple extension of GER concept Includes a crude temperature dependency 	 Parametric approach Requires extensive calibration 	
2.	Constrained equilibrium flamelets Huang & Wen, Kingston University (2)	Detailed	CFX-FLOW3D	• Moderate	Jet fire test, 135m²	 Detailed CO chemistry is included 	 Cannot handle real fuels (e.g. wood) CO chemistry is instantaneous Not thoroughly validated 	
3a.	Two-step eddy breakup Hyde & Moss, Cranfield University (3, 4)	Simple	SOFIE (RANS)	• Low	Steckler compartment	• Simple	 CO chemistry is crude Not thoroughly validated 	
ЗЪ.	Flamelet-based CO model Hyde & Moss, Cranfield University (4)	Detailed	SOFIE (RANS)	 Moderate Flamelet library is precomputed 	Steckler compartment	 Detailed CO chemistry is included 	 Cannot handle real fuels (e.g. wood) CO chemistry is instantaneous Not thoroughly validated 	
4.	Flamelet-based HCN/CO model Tuovinen, SP Swedish National Testing and Research Institute (S)	Detailed GRI 1.2	SOFIE (RANS)	 Moderate Flamelet library is precomputed 	ISO Room corner test	 Accounts detail chemistry 	 Not general fuels CO chemistry is instantaneous Vitiation level has to be prescribed Complex and time-consuming pre- processing 	
5.	CO/HC mass model Hu, Trouve <i>st al</i> University of Maryland (6)	Fast	FDS 4.05 (LES)	 Low Solves 1 extra transport equation for fuel 	RSE experiments at Univ. of Maryland	 Simple and general model Extinction effects 	 Provides CO+ HC predictions Poor extinction treatment – either fully burning or fully extinguished. 	
б.	CO yield McGrattan, NIST Hu <i>st al.</i> USTC, Rinne <i>st</i> <i>al.</i> VIT (8, 9)	None	FDS 4.0	• Low	Tunnel fires	• Simple	Crude predictions	
7.	CO production (Two-step reaction with extinction). Floyd & McGrattan, NIST (7, 10, 11)	Fast	FDS 5.0 (LES)	 Low Solves 3 extra transport equations 	Slot burner, Beyler Hood and RSE experiments	 Does not require detailed chemistry information Consistent HRR Extinction effects 	 Formation step not yet generalised (EDC to be explored) Validated ongoing 	
8.	CMC modelling of CO formation, Cleary <i>et al</i> University of Sydney (6)	Detail GRI 3.0, CER	In-house code (RANS)	• High	Toner's hood fire cases	 Accurate combustion modelling Promising CO predictions 	 Computationally expensive Requires detailed chemistry Not thoroughly validated 	
9.	CO production (dedicated CO transport equation), Paul & Welch, The University of Edinburgh (13, 14)	Simple	SOFIE (RANS)	 Low Solves at least 1 extra transport equation 	VTT 10x10m compartment (9)	 Simple and general model Facilitates linkage to flame spread (13) 	 Less appropriate for turbulent conditions Not thoroughly validated 	

References (from "Fire toxicity"

- 1. Wang, Z., Jia, F. & Galea, E.R. (2006) Predicting toxic gas concentrations resulting from enclosure fires using local equivalence ratio concept linked to fire field models. *Fire and Materials*, 31, pp. 27-51. doi:10.1002/fam.924
- 2. Wen, J. & Huang, L.Y. (2000) CFD modelling of confined jet fires under ventilation-controlled conditions, *Fire Safety J.*, 34(1), pp. 1-24.
- 3. Hyde, S.M. & Moss, J.B. (1999) Field modelling of carbon monoxide production in fires, In: *Interflam '99, Proc. 8th Int. Fire Science and Engineering Conf.*, pp. 951-962.
- 4. Hyde, S.M. & Moss, J.B. (2003) Modelling CO production in vitiated compartment fires, In: Proc. 7th Int. Symp. Fire Safety Science, pp. 395-406.
- 5. Tuovinen, H. & Simonson, M. (1999) Incorporation of detailed chemistry into CFD modelling of compartment fires. SP Report 1999:03.
- 6. Hu, Z., Utiskul, Y., Quintiere, J.G. & Trouvé, A. (2007) Towards large eddy simulations of flame extinction and carbon monoxide emission in compartment fires. In: *Proc. Comb. Inst. 31*, pp. 2537-2545. doi:10.1016/j.proci.2006.08.053
- McGrattan, K., Baum, H., Rehm, R. McDermott, R., Hostikka, S. & Floyd, J. (2008) Fire Dynamics Simulator (Version 5), Technical Reference Guide, Natl. Inst. Stand. Technol. Spec. Publ. 1018-5, 17 March 2008.
- 8. Hu, L.H., Fong, H.K., Yang, L.Z., Chow, W.K., Li, Y.Z. & Huo, R. (2007) Modeling fire-induced smoke spread and carbon monoxide transportation in a long channel: Fire Dynamics Simulator comparisons with measured data, *Journal of Hazardous Materials*, 140, pp. 293-298. doi:10.1016/j.jhazmat.2006.08.075
- 9. Rinne, T., Hietaniemi, J. & Hostikka, S. (2007) Experimental validation of the FDS simulations of smoke and toxic gas concentrations, VTT Working Papers 66, VTT-WORK-66, ISBN 978-951-38-6617-4.
- 10. Floyd, J. & McGrattan, K.B. (2007) Multiple parameter mixture fraction with two-step combustion chemistry for large eddy simulation, In: Proc. Interflam 2007, pp. 907-918.
- 11. Floyd, J. & McGrattan, M. (2008) Validation of a CFD fire model using two step combustion chemistry using the NIST reduced-scale ventilation-limited compartment data, In: *Proc. IAFSS 9*, pp. 117-128.
- 12. Cleary, M.J. & Kent, J.H. (2005) Modelling of species in hood fires by conditional moment closure, *Combust. Flame*, 143, pp. 357-368. doi:10.1016/j.combustflame.2005.08.013
- 13. Welch, S., Collins, S., Odedra, A. & Paul, S.C. (2008) Toxic species yield the role of the solid phase, Poster presentation, *IAFSS 9*, University of Karlsruhe, Germany, 21-26 September 2008.
- 14. Paul, S.C. & Welch, S. (2010) Prediction of CO formation in fires, 6th Int. Sem. Fire & Explosion Hazards, University of Leeds, 9-16 April 2010

Multi-mixture fraction model

- Under development in FDS
 - Validation cases
 - Slot burner, hood and RSE
 - Range of fire sizes and 7 diverse fuels in RSE (IAFSS9)
 - FDS road map* outlines further work
 - Formation rate linked to Magnusson's EDC
 - Decouple soot
 - Asphyxiants: CO, HCN, Low O₂, CO₂
 - Irritants: HCL, HBr, HF, SO₂, NO₂, CH₂CHO (acrolein), CH2O (formaldehyde), X(user defined)

* http://code.google.com/p/fds-smv/wiki/FDS_Road_Map

Flamelet-derived models

- Arbitrarily complex chemistry
 - Done offline
 - Modelled, or experiment
- Steady Laminar Flamelet Model (SLFM)
 - "Instantaneous"
 - Only partial relaxation of fast chemistry assumption
- Demonstrated for well-ventilated fires
 - Half-scale ISO room (Pierce & Moss)
 - Flame spread over corner wall (Marshall & Welch)

Heptane flamelet

- SOFIE laminar flamelet modelling
 - Heptane mechanisms
 - Held (Princeton)
 - 41 species
 - 274 reactions
 - Seiser (UCSD)
 - 160 species
 - 1540 reactions

Corner façade: FR-EPS

Vitiated flamelets

- Vitiated fires
 - Tuovinen
 - 100 species, 2000 reaction
 - Over 30,000 flamelets
 - Moss & Hyde
 - Vitiated flamelets for ethylene
 - Demonstrated in under-ventilated Steckler

Single vitiation level!

New modelling strategy

- Decouple finite-rate CO chemistry
 - CO regarded as trace (mainly)
 - Additional weakly-coupled balance equations and link to solid-phase pyrolysis

$$\frac{\partial \left(\widetilde{Y}_{CO} \right)}{\partial t} + \frac{\partial \left(\overline{\rho} \widetilde{u}_{j} \widetilde{Y}_{CO} \right)}{\partial x_{j}} = \frac{\partial}{\partial x_{j}} \left(\Gamma \frac{\partial \left(\widetilde{Y}_{CO} \right)}{\partial x_{j}} - \overline{\rho u_{j}'' Y_{CO}''} \right) + \overline{\rho} \widetilde{S} \left(Y_{CO} \right)$$

- Implemented in SOFIE3
 - Fire specific RANS code (1990-)
 - Existing non-adiabatic flamelets

Post-processed CO chemistry

- Hybrid SLFM and quasi-laminar
 - Partitioned via turbulent mixing timescale

• $\tau_{mix} \propto k/\varepsilon$

- Hot layer is distinguished
 - Homogenous regions
 - Can couple solid-phase release
- Exploit simple chemistry
 - Two-step reaction mechanisms for range of (simple!) fuels

• Rate flamelets

- Piggy-backed on SLFM
- Explicit representation of finite-rate chemistry
- Can be parameterised
 - Heat loss, vitiation, strain rate

Modelling strategy

CO transport equation

$$\frac{\partial \left(\widetilde{Y}_{CO}\right)}{\partial t} + \frac{\partial \left(\overline{\rho}\widetilde{u}_{j}\widetilde{Y}_{CO}\right)}{\partial x_{j}} = \frac{\partial}{\partial x_{j}} \left(\Gamma \frac{\partial \left(\widetilde{Y}_{CO}\right)}{\partial x_{j}} - \overline{\rho}u_{j}''Y_{CO}''\right) + \overline{\rho}\widetilde{S}(Y_{CO})\right)$$
$$\overline{\rho}\widetilde{S}(Y_{CO}) = MW_{CO}\left[\widetilde{R}_{CO,form} - \widetilde{R}_{CO,cons}\right]$$
$$C_{7}H_{16} + \frac{15}{2}O_{2} \xrightarrow{R_{CO,form}} 8H_{2}O + 7CO$$
$$CO + \frac{1}{2}O_{2} \xrightarrow{R_{CO,cons}} CO_{2}$$

Modelling strategy

Rate expressions (heptane)

 $R_{CO,form} = 6.3 \times 10^{11} \times exp(-30/RT) \times [C_7 H_{16}]^{.25} \times [O_2]^{.5} + 5 \times 10^8 exp(-40/RT) [CO_2]^{.0}$

 $R_{CO,cons} = 10^{14.6} \times exp(-40 / RT) \times [CO] \times [H_2O]^{0.5} \times [O_2]^{0.25}$

- Source term closure
 - Mean properties $\overline{\dot{\omega}} = \dot{\omega}(\overline{T}, \overline{c}_i)$

Rate flamelet
$$\widetilde{R}(\widetilde{\xi}) = \int_0^1 R(\xi) \widetilde{P}(\xi, \widetilde{\xi}) \xi$$

Verification & validation

- Initial qualitative examination
- Discriminate predictive capabilities
- Hood fires (Caltech, 1980's)
 - Natural gas
- VTT large room (W66 report, 2004)
 - 150kW fire
 - Heptane
- RSE/FSE enclosure fires (NIST, 1993-1995)
 - Natural gas
 - Range of fires, including significantly under-ventilated

Results – RSE/FSE experiments

Kinetics?!

- How general?
- Easily changed

e.g. CH4	Mechanism	Label	A	E _a	a	b
■ t4s2	Table IV Row 2	t4r2	1.5 x 10 ⁷	30	-0.3	1.3
■ t2s2	Table II Set 2	t2s2	1.3 x 10 ⁸	48.4	-0.3	1.3
• t2s3	Table II Set 3	t2s3	6.7 x 10 ¹²	48.4	0.2	1.3
■ t2s4	Table II Set 4	t2s4	$1.0 \ge 10^{13}$	48.4	0.7	0.8
■ t2s5	Table II Set 5	t2s5	$2.4 \ge 10^{16}$	48.4	1.0	1.0

 $R_{CO,form} = 1.5 \times 10^{7} \times exp(-30/RT) \times [CH_{4}]^{0.3} \times [O_{2}]^{.3}$ $R_{CO,form} = 1.0 \times 10^{13} \times exp(-48.4/RT) \times [CH_{4}]^{.7} \times [O_{2}]^{.8}$

Kinetics?!

Comparisons

Issue

Researchers

Model basis

Computational cost

Combustion

Formation

Oxidation

Further development

FDS v5.0

Floyd & McGrattan

LES

3 extra equations

Fully integrated

Instantaneous

Extinction model

Soot parameter; other toxic gases **SOFIE 3 extension**

Paul & Welch

RANS

2 extra equations

Post-processed

Finite-rate chemistry

Finite-rate chemistry

Solid-phase pyrolysis; generalise flamelets

Conclusions

- Some modelling frameworks established
 - Dedicated treatment of CO
 - Flexibility is attractive
 - Free of constraints of "instantaneous" chemistry
 - Can patch in solid-phase contributions
 - To achieve it we have to resort to simplified kinetics!
 - With the freedom comes the responsibility
 - What kinetics?!
 - Database?
 - Gas-phase
 - Pure fuels, better info still needed $\overline{\boldsymbol{\Im}}$
 - Solid-phase
 - Will be a much more challenging problem!

References

- Welch, S. Paul, S.C. & Torero, J.L. "Modelling fire growth and toxic gas formation", ch. 20 in *Fire* toxicity, eds. Hull & Stec, Woodhead, 2010
- Paul, S.C. & Welch, C. "Prediction of carbon monoxide formation in fires", FEH6, Leeds, April 2010

Further work

- Addition of pyrolysis yield
 - Extension of flame spread model
- Hybrid models
 - Quasi laminar/turbulence models
 - Condition on mixture fraction variance
 - Simplified chemistry in layer
 - Flamelet treatment in fire plume
- Real fuels
 - Exploit simple tube furnace correlations?
 - Generalisation of CO flamelets