Stefano Chiti

A PILOT STUDY ON HYPOXIC AIR PERFORMANCE AT THE INTERFACE OF FIRE PREVENTION AND FIRE SUPPRESSION

FireSEAT 2011 – The Science of Suppression

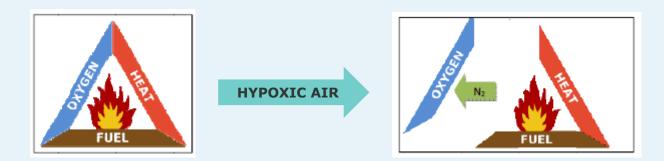
November 9th 2011

Edinburgh, Scotland, UK

Stefano Chiti

Contents

- What is Hypoxic Air Technology (HAT)?
- Effects of low O₂ concentration on the ignition and combustion processes.
- Ignition property test method.
- Flame spread test method.
- Results and discussion of the test series to assess the performance of hypoxic air.
- Conclusions and future development.



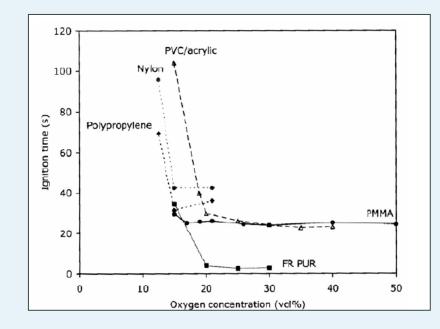
Hypoxic Air Technology (HAT): what is it?

• Hypoxic Air Technology:

- Fire prevention technology based on a continuous reduction of O₂ in the protected volumes.
- When even fire suppression is not acceptable.
- Typically 14-15 vol% O_2 , 85-84 vol% N_2 for fire prevention.
- Lower O_2 concentrations for fire suppression (consistent with gas extinguishing systems).

Effects of low O₂ concentration on ignition and combustion

Minimum Oxygen Concentration (MOC) : below MOC no combustion


- depends on the diluent used to reduce O₂
- if diluent is N₂: $MOC = LFL \cdot \frac{1}{4.77} \cdot \left(\frac{100}{C_{st}} 1\right)$
 - where LFL is the Lower Flammable Limit, C_{st} is the stoichiometric oxygen/fuel ٠ concentration
- similar relationship also for dust clouds
- MOC for fire prevention is not the same as for fire suppression

Stefano Chiti

Effects of low O₂ concentration on ignition and combustion

- Ignition time: increases when lowering O₂ concentration
 - Mc. Alevy et. al.: $t_{ign} \propto m_{O_2}^{-2/3}$
 - Kumar and Hermance: $t_{ign} \propto m_{O_2}^{-n}$
 - Mikkola, Hirsch, Hsieh:
 - PVC: +300% ignition time in $O_2 = 15 \text{ vol}\%$
 - PMMA: + 24% ignition time in $O_2 = 15 \text{ vol}\%$
 - Silicone elastomers: drastic increase
 - FR PUR foam: drastic increase
 - But it is not investigated what happens after ignition

Stefano Chiti

5

Effects of low O₂ concentration on ignition and combustion

- Autoignition time (AIT): increases when lowering O₂ concentration
 - Kashiwagi: 15 vol% limiting O₂ value for successful autoignition
 - Experiments on AIT for gases: $AIT = \frac{e^{E/RT}}{\left[O_{c}\right]^{h}}$
 - Alvares: $AIT \propto P_{O_2}^{-0.25}$

• Minimum Ignition Energy (MIE): rises when decreasing O2 concentration

- Experiment on gases: $MIE \propto OI^{-n}$
 - where Oxygen Index $OI=O_2/(O_{2+} N_2)$; n = 4 (Chinn) or n = 2.5 (Von Elbe)

Stefano Chiti

6

Effects of low O₂ concentration on ignition and combustion

- Flame spread velocity (V): decreases at low O₂ concentrations
 - Studies reported by Babrauskas: $V \propto {m_{O_2}}^n$
 - where n = 2 or n = 1
- Mass loss rate (MLR): decreases at low O₂ concentrations
 - Santo and Tewarson: MLR 30% in $O_2 = 18$ vol% (PMMA)
 - Babrauskas reports: MLR'' = $a \cdot m_{oxygen}$ b
 - where MLR'' is the MLR per unit of surface area, *a* and *b* are constant
- Heat release rate (HRR): decreases drastically if O₂ concentration is low
 - Mulholland: The heat peak decreases drastically if O₂ is lowered, and this effect is greater when approaching the lowest O₂ concentration at which combustion can be sustained.

Effects of low O₂ concentration on ignition and combustion - discussion

- Hypoxic air, by lowering O₂ concentration in the air, has several benefits regarding to the ignition and combustion processes:
 - longer ignition time
 - higher MIE
 - lower flame spread velocity
 - reduced MLR
- Oxygen concentration <= 15vol% can prevent ignition for most solid materials (hypoxic air for fire prevention).
- Oxygen concentration must be consistent with the values for gas suppression systems if hypoxic air is used in suppression mode $(O_2 = 12-13 \text{ vol}\%)$.

8 Stefano Chiti

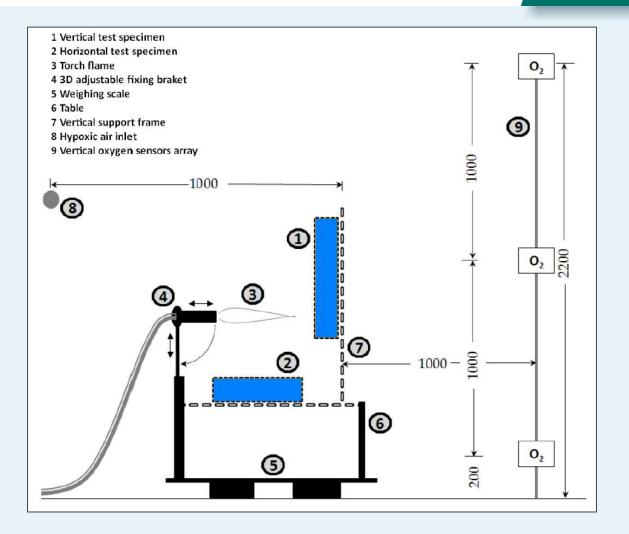
1. Investigate the ignition limiting properties of hypoxic air for fire prevention for different material configurations.

2. Investigate fire spread at different O₂ concentrations (vertical material configuration - worst case).

Stefano Chiti

Test method to assess hypoxic air performance – test room

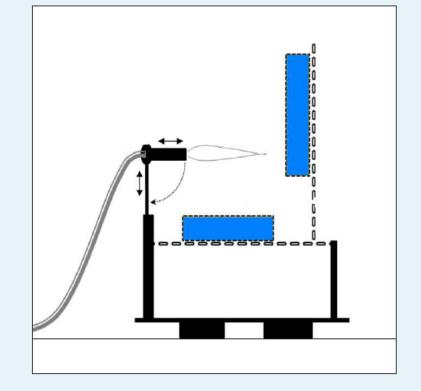
- V = 10.35 m³
- H = 2.3 m
- Airtight room with adjoining air lock
- Door and observation windows.
- Smoke extractor fan



10 | Stefano Chiti

Test method to assess hypoxic air performance – equipment

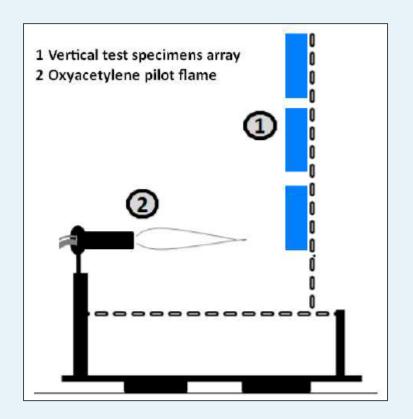
- Nitrogen generator.
- O₂ sensors.
- Oxyacetylene premixed pilot flame.
- Calibrated scale.
- Support frame.
- Common specimens.



11 | Stefano Chiti

Ignition test - procedure

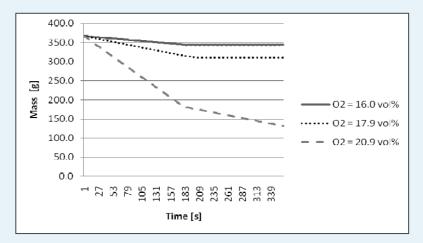
- 1. Horizontal/vertical arrangement of the test specimen, flame direction.
- 2. Reduce O_2 concentration in the test room (O_2 constant throughout the test)
- 3. Regulate pilot flame.
- 4. The pilot flame hit the test specimen for 180 s (FET, Flame Exposure Time).
- Remove the pilot flame and observe the test specimen response for at least 60 s (PET, Post Exposure Time).
- Data on test specimen mass, O2 concentration are continuously recorded during FET and PET.
- Consistent with BSI PAS 95, VdS 3527



12 | Stefano Chiti

Flame spread test - procedure

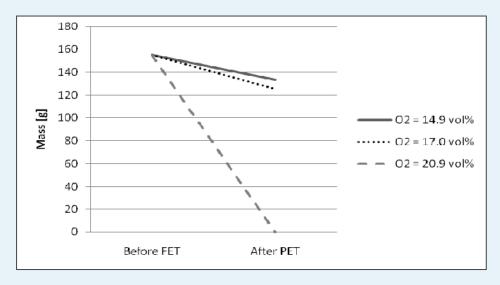
- 1. Vertical array of test specimens.
- 2. Reduce O_2 concentration in the test room.
- 3. Regulate pilot flame.
- 4. The pilot flame hit the bottom test specimen for 180 s.
- 5. Observe if flames spread to the other two specimens.
- Data on test specimens mass, O₂ concentration continuously recorded.



13 | Stefano Chiti

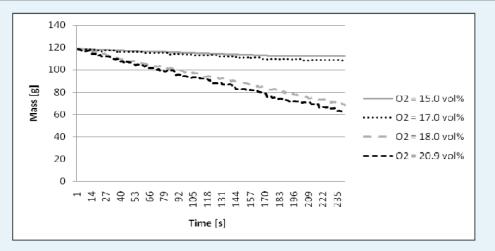
- Polypropylene (PP) : horizontal configuration test.
 - Test specimen: PP box (37x25x12 cm)
 - Ignition limiting O₂ threshold: 16.0 vol% (VdS 3527)

	Ignition during FET	Self-sustained burning/flame spread during PET
$O_2 = 16.0 \ vol\%$	NO	NO
$O_2 = 17.9 \ vol\%$	YES	Small flames, self-extinguishing after 20 s
$O_2 = 20.9 \ vol\%$	YES	YES



- Polypropylene (PP) : vertical configuration test.
 - Test specimen: PP lid for box

	Ignition during FET	Self-sustained burning/flame spread during PET
$O_2 = 14.9 \ vol\%$	NO	NO
$O_2 = 17.0 \ vol\%$	YES	NO
$O_2 = 20.9 \ vol\%$	YES	YES



- Paper: horizontal configuration test.
 - Test specimen: rolled newspaper
 - Ignition limiting O_2 threshold: 14.1 vol%

	Ignition during FET	Self-sustained burning/flame spread during PET
$O_2 = 14.9 \ vol\%$	NO	NO
$O_2 = 17.0 \ vol\%$	YES	Pyrolizing fire
$O_2 = 18.0 \ vol\%$	YES	YES
$O_2 = 20.9 \ vol\%$	YES	YES

16 | Stefano Chiti

- ISO wood crib: horizontal configuration test.
 - Test specimen: ISO wood crib, mini crib type, 5 layers each crib, 2 members each layer, total volume 78 cm³.
 - Test specimen moistened with pure alcohol.
 - Ignition limiting O₂ threshold: 17.0 vol% (untreated wood, VdS 3527)

	Ignition during FET	Self-sustained burning/flame spread during PET
$O_2 = 14.9 \ vol\%$	YES	Small flames, self-extinguishing after 10 seconds.
$O_2 = 16.0 \ vol\%$	YES	Small flames, self-extinguishing after 120 seconds.
$O_2 = 17.0 \ vol\%$	YES	Flames, self-extinguishing after 180 seconds.
$O_2 = 18.0 \ vol\%$	YES	YES
$O_2 = 19.0 \ vol\%$	YES	YES
$O_2 = 20.0 \ vol\%$	YES	YES
$O_2 = 20.9 \ vol\%$	YES	YES

7 | Stefano Chiti

	Initial mass	Mass lost during FET	Mass lost during PET	Mass loss during FET+PET	Final mass
$O_2 = 14.9 \ vol\%$	16.9 g	13.61 %	2.37 %	15.98 %	14.2 g
$O_2 = 16.0 \ vol\%$	16.9 g	14.20 %	27.81 %	42.01 %	9.8 g
$O_2 = 17.0 \ vol\%$	16.9 g	16.57 %	55.03 %	71.60 %	4.8 g
$O_2 = 18.0 \ vol\%$	16.9 g	14.20 %	77.51 %	91.71 %	1.4 g
$O_2 = 19.0 \ vol\%$	16.7 g			96.41 %	0.6 g
$O_2 = 20.0 \ vol\%$	16.8 g			97.62 %	0.4 g
$O_2 = 20.9 \ vol\%$	16.6 g			100 %	0.0 g

Before test

 $O_2 = 15.0 \text{ vol}\%$ $O_2 = 16.0 \text{ vol}\%$

O₂ = **17.0 vol%**

18 **Stefano Chiti**

Ignition test – an example

O₂ = **14.9 vol%**

O₂ = 20.9 vol%

19 | Stefano Chiti

Fire spread test - results

• Test specimen: two wicker boards and a newspaper arranged in a vertical array.

	Flame spread	Mass loss	Visual observations
$O_2 = 15.9 \ vol\%$	NO	3.89 %	Only the bottom wicker board (the one
			directly hit by the pilot flame) ignited.
$O_2 = 20.9 \ vol\%$	YES	82.39 %	The fire spread almost immediately to all
			the three specimens.

Stefano Chiti

20

Fire spread test - results

O₂= **15.9 vol%**

O₂= **20.9 vol**%

10s 60s 300s

21 | Stefano Chiti

FireSEAT 2011 A pilot study on hypoxic air performance at the interface of fire prevention and fire suppression

COWI

Test series - discussion

- Most test specimens did not ignite during the test performed at the lowest O_2 concentration (PP, paper).
 - Exception: wood crib (note: extremely severe heat source, alcohol).
- Difficult to ignite between 16.0 vol% and 17.0 vol% of O_2 concentration, flame and burning self-extinguished during PET, reduction in mass loss.
- No flame spread in the test performed at $O_2 = 15.9$ vol%.
- For the majority of the materials tested there is a sort of a response threshold in terms of burning between 17.0 vol% and 18.0 vol% of $\rm O_2$ concentration.

FireSEAT 2011 *A pilot study on hypoxic air performance at the interface of fire prevention and fire suppression*

Stefano Chiti

Conclusions

- $14.5 \le O_2 \le 15.0$ vol% : hypoxic air limits ignition, prevents flame spread for all investigated materials.
- $16.0 \le O_2 \le 17.0$ vol%: hypoxic air does not fully prevent ignition but does lessen fire damages.
- Accurate assessment of materials, configuration and hazards to determine the correct O_2 concentration.
- More research to exploit and optimize further the potential of Hypoxic Air Technology.

23 | Stefano Chiti FireSEAT 2011 | A pilot study on hypoxic air performance at the interface of fire prevention and fire suppression _______

Acknowledgments

- Prof. **Paolo Tartarini**, University of Modena and Reggio Emilia, Department of Mechanical and Civil Engineering.
- Mr. Geir Jensen, COWI AS

Thank you for your attention!

Stefano Chiti

