

Modelling water spray – From laboratory scale up to fire safety application –

E. Blanchard, P. Boulet, P. Carlotti, A. Collin, A. Jenft, S. Lechêne

CSTB / LEMTA Nancy Université/ CNPP

Elizabeth.MF.Blanchard@gmail.com

Summary

Context and Objectives

Practical problems : tunnel configuration

Description of the test campaign

Studied tests

Test 27 : 6 nozzles Review

More fundamental problems

Droplet evaporation Radiative attenuation

Conclusion and future works

Ontext and Objectives

- **2** Practical problems : tunnel configuration
- Over the second seco
- Onclusion and future works

Summary

Context and Objectives

Practical problems : tunnel configuration

Description of the test campaign

Studied tests

Test 27 : 6 nozzles Review

More fundamental problems

Droplet evaporation Radiative attenuation

Conclusion and future works

Ontext and Objectives

2 Practical problems : tunnel configuration

One fundamental problems

Onclusion and future works

<**♂** > 3/26

Context

Context and Objectives

Practical problems : tunne configuration

- Description of the test campaign
- Studied tests
- Test 27 : 6 nozzles
- Review

More fundamental problems

Droplet evaporation Radiative attenuation

Conclusion and future works

Year	Tunnel	Duration	Consequences for		
			people	structure	
1999	Mont Blanc tunnel (France/Italy)	53 h	39 deads	closed for three years	
1999	Tauern tunnel (Austria)	13 h	12 deads	closed for three months	
2001	St. Gotthard (Switzerland)	2 days	11 deads	closed for two months	
2005	Fréjus	-	2 deads,	10 km of equipment	
	(France/Italy)		21 injured	to be repaired	
				[Lönnermark, 2005]	

Characteristics of tunnel fires :

- Geometry, confined configuration
- Tunnel ventilation
- Potential Heat Release Rate

- Requirements for road tunnels have significantly evolved
- Authorities and operators are still looking for new ways/systems for ensuring a higher safety level

Context

Context and Objectives

Practical problems : tunnel configuration

- Description of the test campaign
- Studied tests
- Test 27 : 6 nozzles Review

More fundamental problems

- Droplet evaporation Radiative attenuation
- Conclusion and future works

Water mist (NFPA 750, XP CEN/TS 14972)

Fine water sprays in which 99 % of the volume of the spray is in drops with diameters less than 1000 μm

Involved phenomena :

- Gas and surface cooling
- Radiative attenuation
- Oxygen dilution
- Interaction with smoke

Design must be assessed on the only basis of real scale tests

Very useful by involving real fire load and fluid flow
 BUT expensive, difficult to conduct and difficult to analyze

Objectives

Context and Objectives

- Practical problems : tunnel configuration
- Description of the test campaign
- Studied tests
- Test 27 : 6 nozzles Review
- More fundamental problems
- Droplet evaporation Radiative attenuation
- Conclusion and future works

Objectives :

- Improve our understanding and quantify the involved phenomena
- Evaluate the capability of computational tools
- Determine their potential contribution to assessment

The study makes an extensive use of the code FDS :

- It is free and open source
- It is widely used by scientists in the field of fire science
- A water spray model was already included

FDS Technical reference guide

FDS has been aimed at solving **practical fire problems in fire protection engineering**, while at the same time providing a tool to study fundamental fire dynamics and combustion

Summary

Context and Objectives

Practical problems : tunnel configuration

- Description of the test campaign
- Studied tests
- Test 27 : 6 nozzles

More fundamental problems

- Droplet evaporation Radiative attenuation
- Conclusion and future works

Ontext and Objectives

2 Practical problems : tunnel configuration

- Description of the test campaign
- Studied tests
- Test 27 : 6 nozzles
- Review

3 More fundamental problems

Description of the test campaign

Context and Objectives

Practical problems : tunnel configuration

Description of the test campaign

Studied tests Test 27 : 6 nozzl

More fundamental problems

Droplet evaporation Radiative attenuation

Conclusion and future works

Model tunnel (1/3) Length : 43 m Cross section : 4 m² Measurements : HRR : O₂ and MLR gas temperature gas velocity radiative heat flux

Water mist system : Operating pressure : 90 bars Five-orifice spray nozzle Mist discharge rate : 5.5 l/min/nozzle Size distribution : hybrid law, d_m =40 µm & δ =2.85

Context a	
Objectives	

Practical problems : tuni configuration

Description of the test campaign

Studied tests

Test 27 : 6 nozzles Review

More fundamental problems

Droplet evaporation

Radiative attenuation

Test	Ventilation regime	Nozzle locations			
	Tests without water mist				
1	sub-critical				
9	sub-critical				
2	supercritical				
	Tests with water mist				
27	supercritical	3 nozzles upstream and 3 nozzles downstream			
28	supercritical	3 nozzles upstream			

Context a	
Objectives	

Practical problems : tuni configuration

Description of the test campaign

Studied tests

Test 27 : 6 nozzles Review

More fundamental problems

Droplet evaporation

Radiative attenuation

Test	Ventilation regime	Nozzle locations	
Tests without water mist			
1	sub-critical		
9	sub-critical		
2	supercritical		
	Tes	sts with water mist	
27	supercritical	3 nozzles upstream and 3 nozzles downstream	
28	supercritical	3 nozzles upstream	

Co	nte	
Ob	jec	

Practical problems : tunr configuration

Description of the test campaign

Studied tests

Test 27 : 6 nozzles Review

More fundamental problems

Droplet evaporation

Radiative attenuation

Test	Ventilation regime	Nozzle locations			
	Tests without water mist				
1	sub-critical				
9	sub-critical				
2	supercritical				
	Tests with water mist				
27	supercritical	3 nozzles upstream and 3 nozzles downstream			
28	supercritical	3 nozzles upstream			

Model tests	Estimation of the measurement	Validation	Extensive use of the co	ode
Repeatability evaluation	uncertainty	Sensitivity analysis	Quantification of the phenomena	
PhD study R. Meyrand (PPRIME/CSTB) 2005-2009	1		1	\mathcal{V}
Experime	ntal stage	Computati	onal stage	

Context and	
Objectives	

Practical problems : tunr configuration

Description of the test campaign

Studied tests

Test 27 : 6 nozzles Review

More fundamental problems

Droplet evaporation

Radiative attenuation

Test	Ventilation regime	Nozzle locations			
Tests without water mist					
1	sub-critical				
9	sub-critical				
2	supercritical				
	Tests with water mist				
27	supercritical	3 nozzles upstream and 3 nozzles downstream			
28	supercritical	3 nozzles upstream			

Simulations of the tests with water mist

Context and Objectives

Practical problems : tunnel configuration

Description of the test campaign

Studied tests

- Test 27 : 6 nozzles Review
- More fundamental problems
- Droplet evaporation Radiative attenuation
- Conclusion and future works

Input data :

- dimensions of the test tunnel, wall thermal characteristics
- exhaust gas volume flow at the downstream side
- operating conditions of the water mist system
- heptane combustion reaction, HRR versus time

Test 27

FDS 5.4.0

11/26

FDS 5.4.0

11/26

Context and Objectives

Practical problems : tunne configuration

Description of the test campaign

Studied tests

Test 27 : 6 nozzles Review

More fundamenta problems

Droplet evaporation

FDS 5.4.0

12/26

FDS 5.4.0

<**□ > 12/26**

Nozzle locations

	Tests without water mist				
ves	1	sub-critical			
al	9	sub-critical			
ns : tunnel	2	supercritical			
ration		Tes	sts with water mist		
n of the test	27	supercritical	3 nozzles upstream and 3 nozzles downstream		
tests	28	supercritical	3 nozzles upstream		

Test Ventilation regime

Test 27 : 6 nozzles

More fundamental problems

Droplet evaporation

Radiative attenuation

Model tests Repeatability evaluation	Estimation of the measurement uncertainty	Validation Sensitivity analysis	Ext	ensive use of the of the of the of the phenomena	code
PhD study R. Meyrand (PPRIME/CSTB) 2005-2009					$\overline{\mathcal{V}}$
Experime	Experimental stage			tage	

Test 27 : 3 upstream and 3 downstream Extensive use : Stratification?

Context and Objectives

Practical problems : tunne configuration

- Description of the test campaign
- Studied tests

Test 27 : 6 nozzles Review

- More fundamental problems
- Droplet evaporation
- Radiative attenuation
- Conclusion and future works

At the HRR peak

Test 27 : 3 upstream and 3 downstream Extensive use : Stratification?

After 420 s, the environment is thermally stratified **whereas** [O₂], [CO₂] and [CO] are almost constant along the vertical axis

Test 27 : 3 upstream and 3 downstream Extensive use : Heat contribution of water mist

- Roughly the half fire heat is absorbed by droplets
- 22 % of decrease of heat loss to surface induced by mist

Test 27 : 3 upstream and 3 downstream Extensive use : Heat contribution of water mist?

Context and Objectives

Practical problems : tunne configuration

Description of the test campaign

Studied tests

Test 27 : 6 nozzles Review

More fundamental problems

Droplet evaporation Radiative attenuation

Conclusion and future works Heat is absorbed by the liquid phase by :

- Gas cooling : 73 %
- Radiative attenuation : 18 %
- Surface cooling : 9 %

16/26

Test 27 : 3 upstream and 3 downstream Extensive use : Heat contribution of water mist?

Context and Objectives

Practical problems : tunne configuration

Description of the test campaign

Studied tests

Test 27 : 6 nozzles Review

More fundamental problems

Droplet evaporation Radiative attenuation

Conclusion and future works Heat is absorbed by the liquid phase by :

- Gas cooling : 73 %
- Radiative attenuation : 18 %
- Surface cooling : 9 %

Practical problems : tunnel configuration Review

Context and Objectives

Practical problems : tunnel configuration

- Description of the test campaign
- Studied tests
- Test 27 : 6 nozzles
- Review
- More fundamental problems
- Droplet evaporation Radiative attenuation
- Conclusion and future works

FDS Technical reference guide

FDS has been aimed at solving **practical fire problems** in fire protection engineering, while at the same time providing a tool to study fundamental fire dynamics and combustion

- Comparison shows a good capability of the code to reproduce the tunnel fire environment with and without water mist
- Gas cooling appears to be the main mechanism, followed by radiative attenuation

17/26

Practical problems : tunnel configuration Review

Context and Objectives

Practical problems : tunnel configuration

- Description of the test campaign
- Studied tests
- Test 27 : 6 nozzles
- Review
- More fundamental problems
- Droplet evaporation Radiative attenuation
- Conclusion and future works

FDS Technical reference guide

FDS has been aimed at solving **practical fire problems** in fire protection engineering, while at the same time providing a tool to study fundamental fire dynamics and combustion

- Comparison shows a good capability of the code to reproduce the tunnel fire environment with and without water mist
- Gas cooling appears to be the main mechanism, followed by radiative attenuation

Is it capable to solve fundamental problems? in particular droplet evaporation and radiative attenuation

Summary

Context and Objectives

- Practical problems : tunnel configuration
- Description of the test campaign
- Studied tests
- Test 27 : 6 nozzles

More fundamental problems

- Droplet evaporation Radiative attenuation
- Conclusion and future works

Ontext and Objectives

2 Practical problems : tunnel configuration

3 More fundamental problems

- Droplet evaporation
- Radiative attenuation

Onclusion and future works

18/26

Validations cases

Practical problems : tunne configuration

Description of the test campaign

Studied tests

Test 27 : 6 nozzles

Review

More fundamental problems

Droplet evaporation Radiative attenuation

Conclusion and future works

FDS - Version 5

Eulerian/Lagrangian approach monodisperse/polydisperse spray

	Submodel	Туре	Case
Spray model	transport	verification	free fall of a single droplet
	heat and mass	verification	thermodynamic equilibrium
	transfer	validation	evaporation rate of one single water droplet
	radiative model	verification	in a nonparticipating medium
		verification &	in a participating medium
		validation	downward configuration
			upward configuration

Validations cases

Practical problems : tunne configuration

Description of the test campaign

Studied tests

Test 27 : 6 nozzles

Review

More fundamental problems

Droplet evaporation Radiative attenuation

Conclusion and future works

FDS - Version 5

Eulerian/Lagrangian approach monodisperse/polydisperse spray

	Submodel	Туре	Case
Spray model	transport	verification	free fall of a single droplet
	heat and mass	verification	thermodynamic equilibrium
	transfer	validation 1	evaporation rate of one single water droplet
	radiative model	verification	in a nonparticipating medium
		verification & 2	in a participating medium
		validation	 downward configuration
			upward configuration

Evaporation Model of heat and mass transfer

$$\frac{dm_p}{dt} = -Ah_m \rho \left(Y_p - Y_g\right)$$
Current model :
$$\frac{dm_p}{dt} = -Ah_m \rho \left(Y_p - Y_g\right)$$

$$m_p c_p \frac{dT_p}{dt} = Ah(T_g - T_p) + \frac{dm_p}{dt} h_v + \dot{q}_r$$
Model of Abramzon and Sirignano :
$$\frac{dm_p}{dt} = -4\pi \overline{\rho} \overline{D} \cdot \frac{r_p Sh^*}{2} \cdot \ln \left(\frac{Y_{v,g} - 1}{Y_p - 1}\right)$$

$$m_p c_p \frac{dT_p}{dt} = -m_p \overline{C_v} \cdot \left(\frac{T_g - T_p}{B_T}\right) + \frac{dm_p}{dt} h_v + \dot{q}_r$$
Model of Taylor and Krishna :
$$\frac{dm_p}{dt} = A_p \frac{p_0 W_p}{RT_f} \cdot \frac{ShD}{2r_p} \ln \left(\frac{1 - Y_g \overline{W}/W_p}{1 - X_p}\right)$$

Rate of evaporation of one single water droplet

Context and Objectives

Practical problems : tunnel configuration Description of the tes campaign Studied tests Test 27 : 6 nozzles

Review

More fundamental problems

Droplet evaporation Radiative attenuation

Conclusion and future works

[Ranz and Marshall, 1952] :

Droplet size : 1050 μ m Droplet temperature : 9.11 °C Air temperature : 24.9 °C Air velocity : 0 m/s Relative humidity : 0 % $\label{eq:constraint} \begin{array}{l} \mbox{[Kincaid, 1989] :} \\ \mbox{Droplet size : [200, 1600 μm]} \\ \mbox{Droplet temperature : 12 $^{\circ}C$} \\ \mbox{Air temperature : 22 $^{\circ}C$} \\ \mbox{Air velocity : 0 m/s} \\ \mbox{Relative humidity : 31 $^{\circ}K$} \end{array}$

Rate of evaporation of one single water droplet

Context and Objectives

Practical problems : tunne configuration

campaign

Studied tests

Test 27 : 6 nozzles Review

More fundamental problems

Droplet evaporation Radiative attenuation

Conclusion and future works

[Ranz and Marshall, 1952] :

Droplet size : 1050 μ m Droplet temperature : 9.11 °C Air temperature : 24.9 °C Air velocity : 0 m/s Relative humidity : 0 %

[Kincaid, 1989] :

Droplet size : $[200, 1600 \ \mu m]$ Droplet temperature : 12 °C Air temperature : 22 °C Air velocity : 0 m/s Relative humidity : 31 %

Loss rate = $\frac{m_{\rho}(t_0) - m_{\rho}(t_0 + \Delta t)}{m_{\rho}(t_0) \cdot \Delta t} 21/26$

Rate of evaporation of one single water droplet

Context and Objectives

Practical problems : tunnel configuration

campaign

Studied tests

Test 27 : 6 nozzles Review

More fundamental problems

Droplet evaporation Radiative attenuation

Conclusion and future works

[Ranz and Marshall, 1952] :

Droplet size : 1050 μ m Droplet temperature : 9.11 °C Air temperature : 24.9 °C Air velocity : 0 m/s Relative humidity : 0 %

[Kincaid, 1989] :

Droplet size : $[200, 1600 \ \mu m]$ Droplet temperature : 12 °C Air temperature : 22 °C Air velocity : 0 m/s Relative humidity : 31 %

Radiative attenuation data from [Lechene's PhD thesis, LEMTA, 2010]

Context and Objectives

Radiative attenuation

Conclusion and

Operating pressure : 4 bars One-single-orifice spray nozzle Solid elliptic spray patterns Mist discharge rate : 0.32 l/min/nozzle d₃₂(20 cm)=100 μm

Context and Objectives

Practical problems : tunnel configuration Description of the test campaign Studied tests

Test 27 : 6 nozzles Review

More fundamental problems

Droplet evaporation

Radiative attenuation

Conclusion and future works

Operating pressure : 4 bars One-single-orifice spray nozzle Solid elliptic spray patterns Mist discharge rate : 0.32 l/min/nozzle $d_{32}(20 \text{ cm})=100 \text{ }\mu\text{m}$

FDS version 5 underestimates the radiative attenuation Discrepancy with measurements : 31 % Discrepancy with BERGAMOTE : 42 %

< 🗗 ▶

22/26

FDS 5.5.0 svn 6263

Context and Objectives

More fundamental

Radiative attenuation

Conclusion and

Transmission with the spray off

Operating pressure : 4 bars One-single-orifice spray nozzle Solid elliptic spray patterns Mist discharge rate : 0.32 l/min/nozzle d₃₂(20 cm)=100 μm

Theory

$$\kappa_{\lambda}(s) = \frac{1}{\delta x \delta y \delta z} \int_{\lambda} \int_{r=0}^{\infty} f(r, s) C_{a}(r, \lambda) dr d\lambda$$

FDS 5

$$\kappa_{\lambda}(s) = \frac{1}{\delta x \delta y \delta z} \int_{\lambda} \int_{r=0}^{\infty} f(r, d_m(s)) C_a(r, \lambda) dr d\lambda$$

Proposed modification

$$\kappa_{\lambda}(s) = \frac{1}{\delta x \delta y \delta z} \int_{\lambda} C_{a}(r_{32}, \lambda) d\lambda$$

<- 23/26

llackbody at _____

Data in mm

Context and Obiectives

Practical problems : tunnel configuration Description of the test campaign

Studied tests

Test 27 : 6 nozzles Review

More fundamental problems

Droplet evaporation

Radiative attenuation

Conclusion and future works

Operating pressure : 4 bars One-single-orifice spray nozzle Solid elliptic spray patterns Mist discharge rate : 0.32 l/min/nozzle $d_{32}(20 \text{ cm})=100 \text{ }\mu\text{m}$

The modification leads to an improvement in predictions Discrepancy with measurements : 11 % Discrepancy with BERGAMOTE : 7 %

7 nozzles located on the same feed pipe

20 cm

80 cm

100 cm

1500

● 60 cm

FDS 5.5.0 svn 6263

Summary

Context and Objectives

Practical problems : tunnel configuration

Description of the test campaign

Studied tests

Test 27 : 6 nozzles Review

More fundamental problems

Droplet evaporation Radiative attenuation

Conclusion and future works

Context and Objectives

2 Practical problems : tunnel configuration

One fundamental problems

Onclusion and future works

• 24/26

Conclusion

Context and Objectives

Practical problems : tunnel configuration

Description of the test campaign

Studied tests

Test 27 : 6 nozzles

Review

More fundamental problems

Droplet evaporation Radiative attenuation

Conclusion and future works

Study on tunnel fire tests

- Good capability of the code for predicting the thermal environment (temperature and heat flux) and the gas flow
- Some discrepancies in critical conditions
- Strong duality between thermal and toxic environment
- Heat absorbed by mist represents around 1/2 of HRR
- Heat is mainly absorbed by mist from gaseous phase
- The use of computational tools appears as an interesting complement to experimentation

Study on more fundamental problems

Current version 5

- $\bullet\,$ Evaporation of one single droplet with a mean discrepancy of 18.0 $\%\,$
- Attenuations through water curtain with a discrepancy close to 30 %

Some modifications have been proposed

- One in the radiative model has been accepted and integrated in the next version 6
- Others in the heat and mass transfer model are still under study
 25/26

Future works

<- 26/26

- Modify the structure of the heat and mass transfer
 - Pursue the assessment of evaporation model
 - Assess the model of heat transfer to surface

• Study the visibility both with and without water mist

Study the influence of water mist on fire activity and combustion reaction

- Context and Objectives
- Practical problems : tunnel configuration
- Description of the test campaign
- Studied tests
- Test 27 : 6 nozzles Review
- More fundamental problems
- Droplet evaporation Radiative attenuation