

Knowing the Fire Sprinkler Spray

November 9, 2011

The Science of Suppression **FireSEAT** Edinburgh, Scotland UK

Ning Ren, Chi Do, and Andre Marshall

Sponsors: FM Global, NSF

Overview

- Introduction
 - How do we quantify sprinkler sprays?
- Objective
 - Evaluate discharge characteristics through measurements
- Measurements and Results
 - Stream Formation
 - Stream Breakup
 - Initial Spray
 - Dispersed Spray
- Summary

Introduction – Sprinkler Spray Example

A. JAMES CLARK SCHOOL OF ENGINEERING

Introduction – Sprinkler Spray Characteristics

How do we quantify sprinkler sprays? •

Spray Discharge

	Discharge Properties			
<i>d_{v50}</i> (mm)	2.1			
u _{ini} (m/s)	10.5			
θ _{inj} (deg)	95			
q" (mm/min)	1.5			
r _{cov} (m)	4			

۲	<i>r</i> (m)	θ (deg)	ψ (deg)	d (mm)	<i>u</i> (m/s)	
1	0.35	95	100	2.3	10.2	
2	0.35	99	92	0.5	9.8	
3	0.35	92	275	3.1	8.9	
4	0.35	90	117	1.2	11.1	
1,000,000	0.35	97	342	0.3	10.7	

Objective

Evaluate discharge characteristics from fire suppression devices from measurements to support CFD model and fire suppression product development (nozzle and system)

Approach – Stream Formation

Planar Laser Induced Fluorescence (PLIF)

- Qualitative view of sheet topology.
- Difficulty measuring exact sheet thickness due to deflector surface reflections.
- High speed camera would provide breakup visualization.

- Two distinct streams are formed.
- Flow split between these streams governs the sheet • thickness and the resulting drop size

Qualitative view of sheet topology

Approach – Stream Breakup

Short Time Exposure Photography

Canon 12-bit 3.4 Mpixel **Digital SLR Camera**

Results – Stream Breakup

Approach – Initial Spray

Shadowgraph/PTV (Drop Size/Velocity) Measurements

Sprinkler

Approach – Initial Spray

Area used: 150X150 mm

Image size: 170X170 mm

Minimum drop resolved: ~0.2mm

Std Nozzles (D3): • $D_o = 6.2 \text{ mm} - \text{tine}$, • $D_o = 11.0 \text{ mm} - \text{tine}$, • $D_o = 6.2 \text{ mm} - \text{slot}$, \bigcirc *D_o* = 11.0 mm - slot; Basis Nozzles: ■ *D_o* = 3.2 mm, ■ *D_o* = 6.2 mm, ■ *D_o* = 9.5 mm

Results – Initial Spray

Ren, N., Baum, H., & Marshall, A., "A comprehensive methodology for characterizing sprinkler sprays," Proceedings of the Combustion Institute, 2010, pp. 2547–2554

Sprinkler Discharge

- Physically rational compact description of spray.
- Provides a framework for spray evaluation and insight.
- **48** coefficients describe (and can generate) the 3D stochastic spray.
- **15** first order coefficients describe primary spray characteristics.

Peak (Gaussian)											
		Volume Probability Density (for location) $f_V(\theta \psi_{t,s})$		Drop Size				Velocity			
				$\frac{d_{v50} / D_o}{D_o = 11 \text{ mm}}$		Γ (distribution width)		u/U U = 15 m/s			
~			t	S	t	S	t	S	t	S	
Table (Legendre)	Avg.	I	0.004	0.007	0.11	0.10	2.9	2.8	0.62		
		L_0	0.14*	0.46*							
(0)	Shape	F_{0}	0.86	0.54	N/A						
		θ (°)	102	107							
		σ (°)	3.4	2.6							
		L_{1}/L_{0}	0.59	0.69	-0.012	0.33	-0.085	0.016			
		L_2/L_0	-0.95	-1.1	0.48	0.052	0.053	-0.36			
		L_{3}/L_{0}	0.46	-0.027	0.067	0.60	0.016	0.40			
		L_4/L_0	-0.31	0.80	0.097	-0.17	0.063	0.046			
		L_{5}/L_{0}	0.26	-0.63	0.43	0.56	0.037	0.46			

$$f_v(\psi_s)/f_v(\psi_t) = 0.86$$

Malvern Drop Size Measurements

Malvern Spraytec Analyzer (Light Diffraction Technique)

Local Measurements

Drop size limit (~ 0.8 mm)

A. JAMES CLARK SCHOOL OF ENGINEERING

Local Drop Size Distribution

Results – Drop Size Comparison

Tyco D3 K = 81 lpm bar^{-1/2}

P = 1.4 bar

Approach – Dispersed Spray

Volume Flux Measurements

1.0 m 1.0 m

Tyco D3 K = 81 lpm bar^{-1/2} P = 1.4 bar 2.9 mm/min

Results – Dispersed Spray

- Focused measurements provide insight into the discharge characteristics of sprinkler sprays.
- Qualitative and quantitative measurement methods are available to explore sprinkler spray behavior from stream formation to the dispersed spray.
- These measurements provide insight into basic features of the spray (images/ comprehensive framework), relationship with nozzle geometry (scaling laws), CFD modeling input (detailed measurements), and suppression performance (volume flux measurements).

Future Work - Measurements

Near Field Patternation Measurements

A. JAMES CLARK SCHOOL OF ENGINEERING

Tyco D3 K = 81 lpm bar^{-1/2} P = 0.7 bar

Acknowledgements

FM Global Sponsors

Dr. Bert Yu Dr. Sergey Dorofeev

UM Fire Suppression Spray Group

Current

Dr. Howard Baum Dr. Ning Ren Dr. Paolo Santangelo Ms. Yinghui Zheng Mr. Giovonni Bendetto Ms. Di Wu

- Mr. Ning Ren Mr. Paolo Santangelo
- Mr. Chi Do
- Mr. Andrew Blum
- Ms. Delphine Guillemin

Graduates