The Fire Induced Ceiling Jet Revisited

Ronald L. Alpert, ScD, FSFPE Editor, Journal of Fire Protection Engineering Rockport, Cape Ann, MA USA

Topics to be Discussed

- Importance of Ceiling Jet for Detection/Activation
- Basis for Ceiling Jet Formulas Published in 1972
- Comparison with Regression Fit to Available Data
- Re-examination of Data from Steady-State Fire Sources Used for Original Formulas
- CFD Modeling of Spray/Fire Interactions in 1980's
- Determination of Agent Flux to Suppress a Fire

Significance of Ceiling Jet Flow

- Determines when ceiling-mounted thermal or smoke detectors will operate
- Determines when sprinkler link or bulb will trigger flow of agent from ceiling-mounted devices for fire suppression
- Determines total number of ceiling-mounted devices operating, and hence maximum agent flow rate
- Causes damage to ceiling due to ignition and flame spread or structural failure

Ceiling Jet Formulas

- FMRC technical report on ceiling jet model, with limited data from full-scale, "distributed" in 1971
- Data on ceiling jet excess gas temperature and velocity from many full-scale fire tests obtained
- Guided by parameters from model, data correlated
- Resultant formulas presented at NFPA meeting and published in Fire Technology in 1972

Formula for Maximum Gas Velocity in Ceiling Jet Published in 1972

Formula for Maximum Excess Gas Temperature in Ceiling Jet, 1972

$$T_{\text{max}} - T_{\infty} = 5.38 \frac{\frac{\dot{Q}^{2/3}}{H^{5/3}}}{\left(\frac{r}{H}\right)^{2/3}} \quad r/H > 0.18$$

Comparison of Original Ceiling Jet Formulas with Regression Fits to Data

- Original formulas based on qualitative curve fit to data from full-scale and scale-model tests performed in 1969-1971
- Selected data on maximum ceiling jet velocity and excess temperature from these full-scale tests are still available for analysis
- Regression fits to these data can be compared to original formulas

Original Heats of Combustion

Fuel Type	Net Heat of Complete CombustionError! Bookmark not defined. [kJ/g]	Chemical Heat of Combustion Used for Original Formula [kJ/g]
Ethanol Pool	27.70	22.38
Wood Four-way Pallet Stack	16.4	13.96
Polyethylene Bottles in Compartmented Cardboard Boxes*	28.1	24.66
Polystyrene Jars in Compartmented Cardboard Boxes**	33.7	31.63
Heptane Sprays	44.6	44.6

Original Fire Source Conditions

Fuel Type	Height of Burning Fuel [m]	Effective Diameter of Fuel [m]	Ceiling Height above Top of Fuel [m]	Fuel Flow or Mass Loss Rate [g/s]	Total HRR [kW]	Chemical HRR [kW]
Ethanol Pool	0.00	1.09	8.61	24.18	669.8	541.15
Wood Four-way Pallet Stack	2.44	1.38	15.54	318.0	5,215	4,439
PE Bottles in Cardboard Boxes	4.57	2.77	13.41	1,390.5	39,034	34,290
PS Jars in Cardboard Boxes	4.11	2.94	13.87	3,113	104,752	98,464
Heptane Spray A	0.00	3.66	7.92	173.6	7,744	7,744
Heptane Spray B	0.00	3.66	7.92	303.8	13,551	13,551
Heptane Spray C	0.00	3.66	7.92	434.1	19,359	19,359
Heptane Spray D	0.00	3.66	7.92	520.9	23,231	23,231
Heptane Spray E	0.00	3.66	4.572	173.6	7,744	7,744
Heptane Spray F	0.00	3.66	4.572	303.8	13,551	13,551
Heptane Spray G	0.00	3.66	4.572	434.1	19,359	19,359

Velocity Function in Ordinate

Original Velocity Correlation Based on Original Heat Release Rate and Ceiling Height above Fuel

Comparison of Regression Fit with Original Velocity Formula

Excess Temperature Function in Ordinate

Original Excess Temperature Correlation Based on Original HRR and Ceiling Height above Fuel

Radius/Ceiling Height above Fuel Top Surface

Comparison of Regression Fit with Original Excess Temp. Formula

•Re-examination of Data from Steady-State Fire Sources

- Only use data from ethanol pool and heptane spray fire sources, since these have well-defined HRR
- Use ceiling height above the virtual plume origin, instead of above the fuel surface or nozzle elevation
- Use convective component of heat release rate instead of the chemical (actual) heat release rate, in the velocity or excess temperature functions, since flow velocity and excess temperature are controlled by convection

Virtual Plume Origin Formula

Handbook Values for Heats of Combustion of Ethanol & Heptane

Fuel Type	Chemical Heat of Combustion [kJ/g]	Convective Heat of Combustion [kJ/g]		
Ethanol Pool	25.60	19.00		
Heptane Sprays	41.2	27.6		

Source Conditions for Steady Fires

Fuel Type	Effective Diameter of Fuel [m]	Fuel Flow or Mass Loss Rate [g/s]	Chemical HRR [kW]	Virtual Origin Height above Base of Burning Fuel, [m]	Ceiling Height above Virtual Origin, [m]	Convective HRR [kW]
Ethanol Pool	1.09	24.18	619.0	-0.0227	8.63	459.4
Heptane Spray A	3.66	173.6	7,153	-0.8409	8.77	4,792
Heptane Spray B	3.66	303.8	12,518	-0.1159	8.04	8,386
Heptane Spray C	3.66	434.1	17,883	0.4385	7.48	11,980
Heptane Spray D	3.66	520.9	21,460	0.7539	7.17	14,376
Heptane Spray E	3.66	173.6	7,153	-0.8409	5.41	4,792
Heptane Spray F	3.66	303.8	12,518	-0.1159	4.69	8,386
Heptane Spray G	3.66	434.1	17,883	0.4385	4.13	11,980

Modified Velocity Function in Ordinate

Velocity Correlation Based on Conv HRR & Ceiling Height above Virtual Origin

Modified Excess Temperature Function in Ordinate

Regression Fit from Re-examination: Maximum Gas Velocity

Regression Fit from Re-examination: Maximum Excess Gas Temperature

$$T_{\max} - T_{\infty} = 6.721 \frac{\dot{Q}_c^{2/3}}{\left(z_H - z_v\right)^{5/3}} \left(\frac{r}{z_H - z_v}\right)^{-0.6545}$$

$$R^2 = 0.958$$

CFD Modeling of Spray-Fire Interactions, 1980-1985

- Predict suppression effectiveness once spray device is activated by the ceiling jet flow
- Simplified axisymmetric geometry: spray above fire
- Iterative Eulerian gas solution using TEACH CFD
- Iterative Lagrangian droplet tracking after several gas flow iterations
- Full mass, momentum and energy transfer between gas and droplet phases

Comparison of CFD with Data: No Spray

Comparison of CFD with Data: No Fire

Streamlines for Strong (3.8 MW) Plume vs. Spray with 0.6 mm Droplets

Isotherms for Strong (3.8 MW) Plume vs. Spray with 0.6 mm Droplets

Correlation of CFD Results Using Momentum & Droplet Size Ratios

Determination of Minimum Agent Flux Required to Suppress a Fire

- Measurement of Flame Heat Flux within a Burning Fuel Array Can be Used to Infer Agent Flux Needed from a Single Fire Test
- Most Dangerous Fuel Arrays Involve Vertical Flues
- Rugged Measurement Instrument Developed to Obtain Flame Heat Flux within a Combustible Flue
- Parallel Vertical Panel Apparatus Represents Essential Element of Such Flue Arrays
- Fire exposure is propane sand burner, 30-100 KW

Parallel Vertical Surface Fire Test

Heat Flux Measurement Pipe

- Water-cooled, rugged pipe is 22 mm diameter to minimize flow disturbance
- Water flow rate of about 8 l/min to obtain maximum Temp differences and prevent boiling at 100 kW/m²
- Fully turbulent flow in a spiral pipe annulus insures efficient heat transfer to water-immersed T/C's
- At the design water flow rate, the system response time is about 7 s

Measurement of Flame Heat Flux during Fire Test 8 6 1 - H eat Flux Pipe 2 – Gas Burner 3 - Flow Meter and T/C Outlet 6 - Parallel Panels - Cold Water In 10 - Water Out 6

10

Summary

- Since early 1970's, has been possible to predict when spray suppression devices in the ceiling jet will be activated
- Since early 1980's, has been possible to predict how much of agent flow from spray suppression devices will reach burning fuel locations
- Since early 2000's, has been possible to predict, from a single fire test, the minimum agent flux required for fire suppression