Institution of Fire Engineers Rasbash Lecture 40th Anniversary Symposium

Radiation and Incomplete Combustion of Buoyant Turbulent Diffusion Flames

John L. de Ris University of Edinburgh May 15th 2014

A 1983 discussion with David Rasbash in led to the recent paper

"Mechanism of Buoyant Turbulent Diffusion Flames"

Procedia Engineering 62 (2013) 13-27

Global $V_f \sim \dot{Q}$

- Rayleigh-Taylor Instability drives combustion of flamelets
- τ_{R-T} mixing time independent of fire size
- $\overline{\dot{q}'''} = 1110 \ kW/m^3$ independent of fire size
- Radiant Fraction, χ_R , independent of fire size
- Incompleteness of Combustion, χ_I , independent of fire size

- Rayleigh-Taylor Instabilities drive $\overline{\dot{q}}'''$ of buoyant turbulent diffusion flames.
- Smoke-Point, ℓ_s , correlates χ_I .
- Diagrammatic and Mathematical models for χ_R and χ_I .
- Comparison of model with experiment for burning in air.
- Correlation of χ_R measurements in general atmospheres.
- Model for flame radiation absorption coefficients in terms of $\Delta H_c, S$ and ℓ_s
- Recommendations

4

Definitions:

$$\chi_{R} = \frac{\dot{Q}_{R}}{\dot{M} \Delta H_{C}}; \quad \chi_{conv} = \frac{\dot{Q}_{conv}}{\dot{M} \Delta H_{C}}; \quad \chi_{I} = \frac{\dot{Q}_{I}}{\dot{M} \Delta H_{C}}$$

Conservation of Energy

 $\dot{M} \Delta H_{c} = \dot{Q}_{R} + \dot{Q}_{conv} + \dot{Q}_{I}$ $1 = \chi_{R} + \chi_{conv} + \chi_{I}$ $\chi_{R} = 1 - (\chi_{conv} + \chi_{I})$

Available chemical energy per unit flame mass

$$h_{ch} - h_0 = \Delta H_C / (1 + S)$$

S is the stoichiometric air/fuel mass ratio

Soot formation rate is inversely proportional to smoke point flame height

Smoke point correlates the soot yield, Y_s , and incompleteness of combustion, χ_I , of buoyant turbulent diffusion flames burning in air.

τ_{R-T} is constant

Coupling between effective flame radiation temperature $\left[\left(\overline{T_{Rf}^{4}}\right)^{1/4}\right]$ and peak gas temperature T_{conv}

Effective Flame Radiation Temperature - T_{Rf}

Schmidt Temperature Measurement

Flame Absorption equals Flame Emission when the temperature of the block body source, $T_{oven} = T_{Rf}$

$$T_{oven} = T_{Rf} \Longrightarrow T_{Schmidt}$$

Governing Equation

$$\chi_{R} = 1 - \frac{h_{conv} - h_{0}}{h_{ch} - h_{0}} = 1 - \frac{4}{3} \frac{C_{P} \left(T_{Rf} - T_{0}\right)}{h_{ch} - h_{0}}$$

Non-Dimensional Transformation

$$T_{\text{Ref}} = 1500K; \quad h_{\text{Ref}} = \frac{4}{3}C_{P}T_{\text{Ref}} = 2.79 \, kJ/g; \quad \zeta = \frac{T_{Rf}}{T_{\text{Ref}}}; \quad \zeta_{0} = \frac{T_{0}}{T_{\text{Ref}}}; \quad \zeta_{0} = \frac{T_{0}}{T_{0}};$$

$$\chi_{R} = 1 - \frac{4/3C_{P}(T_{Rf} - T_{0})}{h_{ch} - h_{0}} = 1 - \frac{4/3C_{P}T_{Ref}(\zeta - \zeta_{0})}{h_{Ref}(\zeta_{ch} - \zeta_{0})} = 1 - \frac{\zeta - \zeta_{0}}{\zeta_{ch} - \zeta_{0}}$$

mathematical equation relating

$$\zeta_R \& \zeta$$

$$\chi_R = \frac{\zeta_{ch} - \zeta}{\zeta_{ch} - \zeta_0}$$

9

© 2012 FM Global. All rights reserved.

Radiant Fraction

$$\dot{Q}_{R} = A_{f}\sigma\left(T_{Rf}^{4} - T_{0}^{4}\right)\left[1 - \exp\left(-\kappa\ell_{m}\right)\right]$$

$$\dot{Q} = \overline{\dot{q}}^{m}V_{f} = \left(1110 \, kW/m^{3}\right)V_{f}$$

$$\chi_{R} = \frac{\dot{Q}_{R}}{\dot{Q}} = \frac{A_{f}\sigma}{\overline{\dot{q}}^{m}V_{f}}\left(T_{Rf}^{4} - T_{0}^{4}\right)\left(1 - \exp\left(-\kappa\ell_{m}\right)\right)$$
Mean Beam Length $\ell_{m} = \frac{3.6V_{f}}{A_{f}} \Rightarrow \frac{A_{f}}{V_{f}} = \frac{3.6}{\ell_{m}}$

$$\chi_{R} = \frac{3.6\kappa\sigma}{\overline{\dot{q}}^{m}}\left(T_{Rf}^{4} - T_{0}^{4}\right)\left[\frac{1 - \exp\left(-\kappa\ell_{m}\right)}{\kappa\ell_{m}}\right] \xrightarrow{\kappa\ell_{m}} \rightarrow 0 \rightarrow \frac{3.6\kappa\sigma}{\overline{\dot{q}}^{m}}\left(T_{Rf}^{4} - T_{0}^{4}\right)\left(\frac{1 - \exp\left(-\kappa\ell_{m}\right)}{\kappa\ell_{m}}\right) \xrightarrow{\kappa\ell_{m}} \rightarrow 0 \rightarrow \frac{3.6\kappa\sigma}{\overline{\dot{q}}^{m}}\left(T_{Rf}^{4} - T_{0}^{4}\right)\left(\frac{1 - \exp\left(-\kappa\ell_{m}\right)}{\kappa\ell_{m}}\right) \xrightarrow{\kappa\ell_{m}} \rightarrow 0 \rightarrow \frac{3.6\kappa\sigma}{\overline{\dot{q}}^{m}}\left(T_{Rf}^{4} - T_{0}^{4}\right)\left(\frac{1 - \exp\left(-\kappa\ell_{m}\right)}{\kappa\ell_{m}}\right) \xrightarrow{\kappa\ell_{m}} \rightarrow 0 \rightarrow \frac{3.6\kappa\sigma}{\overline{\dot{q}}^{m}}\left(T_{Rf}^{4} - T_{0}^{4}\right)\left(\frac{1 - \exp\left(-\kappa\ell_{m}\right)}{\kappa\ell_{m}}\right) \xrightarrow{\kappa\ell_{m}} \rightarrow 0 \rightarrow \frac{3.6\kappa\sigma}{\overline{\dot{q}}^{m}}\left(T_{Rf}^{4} - T_{0}^{4}\right)\left(\frac{1 - \exp\left(-\kappa\ell_{m}\right)}{\kappa\ell_{m}}\right) \xrightarrow{\kappa\ell_{m}} \rightarrow 0 \rightarrow \frac{3.6\kappa\sigma}{\overline{\dot{q}}^{m}}\left(T_{Rf}^{4} - T_{0}^{4}\right)\left(\frac{1 - \exp\left(-\kappa\ell_{m}\right)}{\kappa\ell_{m}}\right) \xrightarrow{\kappa\ell_{m}} \rightarrow 0 \rightarrow \frac{3.6\kappa\sigma}{\overline{\dot{q}}^{m}}\left(T_{Rf}^{4} - T_{0}^{4}\right)\left(\frac{1 - \exp\left(-\kappa\ell_{m}\right)}{\kappa\ell_{m}}\right) \xrightarrow{\kappa\ell_{m}} \rightarrow 0 \rightarrow \frac{3.6\kappa\sigma}{\overline{\dot{q}}^{m}}\left(T_{Rf}^{4} - T_{0}^{4}\right)\left(\frac{1 - \exp\left(-\kappa\ell_{m}\right)}{\kappa\ell_{m}}\right) \xrightarrow{\kappa\ell_{m}} \rightarrow 0 \rightarrow \frac{3.6\kappa\sigma}{\overline{\dot{q}}^{m}}\left(T_{Rf}^{4} - T_{0}^{4}\right)\left(\frac{1 - \exp\left(-\kappa\ell_{m}\right)}{\kappa\ell_{m}}\right) \xrightarrow{\kappa\ell_{m}} \rightarrow 0 \rightarrow \frac{3.6\kappa\sigma}{\overline{\dot{q}}^{m}}\left(T_{Rf}^{4} - T_{0}^{4}\right)\left(\frac{1 - \exp\left(-\kappa\ell_{m}\right)}{\kappa\ell_{m}}\right) \xrightarrow{\kappa\ell_{m}} \rightarrow 0 \rightarrow \frac{3.6\kappa\sigma}{\overline{\dot{q}}^{m}}\left(T_{Rf}^{4} - T_{0}^{4}\right)\left(T_{Rf}^{4} - T_$$

Flame radiation comes from both soot and gases

2

Physical Governing Equation

$$\chi_{R} = 1 - \frac{h_{conv} - h_{0}}{h_{ch} - h_{0}} = 1 - \frac{4}{3} \frac{C_{P} \left(T_{Rf} - T_{0}\right)}{h_{ch} - h_{0}} = \frac{3.6\kappa\sigma}{\bar{q}'''} \left(T_{Rf}^{4} - T_{0}^{4}\right)$$

Non-Dimensional Transformation

$$T_{\text{Ref}} = 1500K; \quad h_{\text{Ref}} = \frac{4}{3}C_{P}T_{\text{Ref}} = 2.79kJ/g; \quad \zeta = \frac{T_{Rf}}{T_{\text{Ref}}}; \quad \zeta_{0} = \frac{T_{0}}{T_{\text{Ref}}};$$

$$\zeta_{ch} - \zeta_{0} = \frac{h_{ch} - h_{0}}{h_{\text{Ref}}} = \frac{\Delta H_{C}}{h_{\text{Ref}}(1+S)}; \quad U = \frac{3.6\sigma T_{\text{Ref}}^{4}\kappa}{\bar{q}'''} \left[\frac{1 - \exp(-\kappa\ell_{m})}{\kappa\ell_{m}}\right]$$

$$\tau_{R} = 1 - \frac{4/3C_{P}(T_{Rf} - T_{0})}{h_{ch} - h_{0}} = 1 - \frac{4/3C_{P}T_{\text{Ref}}(\zeta - \zeta_{0})}{h_{\text{Ref}}(\zeta_{ch} - \zeta_{0})} = 1 - \frac{\zeta - \zeta_{0}}{\zeta_{ch} - \zeta_{0}} = U(\zeta^{4} - \zeta_{0}^{4})$$

Mathematical Equation to be solved

$$\chi_{R} = \frac{\zeta_{ch} - \zeta}{\zeta_{ch} - \zeta_{0}} = U\left(\zeta^{4} - \zeta_{0}^{4}\right)_{11}$$

FM Global Mathematical Model 5

$$\chi_{Ra} = \frac{\zeta_{ch} - \zeta}{\zeta_{ch} - \zeta_0} = \frac{\zeta_{ch} - 1}{\zeta_{ch} - \zeta_0} + \frac{1 - \zeta}{\zeta_{ch} - \zeta_0} = \mu_a + \chi_{Ia} \text{ in air}$$
$$\mu \qquad \chi_{Ia}$$

What is μ ?

$$\iota = \frac{\zeta_{ch} - 1}{\zeta_{ch} - \zeta_0} = 1 - \frac{(1 - \zeta_0)}{\zeta_{ch} - \zeta_0} = 1 - \frac{0.8h_{\text{Ref}}}{\Delta H_C / (1 + S)}$$

 $\chi_{Ia} = Max(0, \chi_{Ra} - \mu_a)$

1. μ is a function of ΔH_C , *S*, T_0 and h_{Ref} 2. approximately linear function of T_{ad} 3. empirically, χ_R is a linear function of μ 4. also, $\chi_I = 0$ if $\chi_R \le \mu$ or $\zeta \ge 1$

THREE CASES:

1. Complete oxidation of soot: $\chi_I = 0$

 $T_{Rf} \ge 1500K \implies$ all soot is eventually oxidized

Unusual for fuels burning in air

2. Partial oxidation and release of soot : $0 \le \chi_I \le 0.2$ $1200K \le T_{Rf} < 1500K$ with $T_{conv} \ge 1500K$ all fuel pyrolyzes in flame Typical of aliphatic hydrocarbons

3. Copious soot formation: $\chi_I > 0.2$ some fuel decomposes at low temperatures and bypasses flame $T_{Rf} < 1200K$ and $T_{conv} \le 1500K$ Typical of aromatic hydrocarbons

Examples: CH_4 or C_2H_6 burning in O_2 enhanced air

CASE 2. Partial oxidation and release of soot $1200K \le T_{Rf} < 1500K$ $0 < \chi_I \le 0.2$ and $0.8 \le \zeta < 1$ $T_{conv} \ge 1500K$

All fuel decomposes in flame Typical of aliphatic hydrocarbons

Comparison with Experiment

CASE 3. Extremely sooty flames Tewarson FPA measurements

CASE 3. Copious soot formation with some fuel decomposing at low temperatures and bypassing flame $T_{Rf} < 1200K$ and $T_{conv} \le 1500K$ $0.2 < \chi_1$ and $\zeta \le 0.8$ Also, T_{conv} being less than $\le 1500K$ results in some flame extinguishment.

Aromatic hydrocarbons typically burn according to Case 3. 18

FM Global Theory

CASE 3. Copious soot formation with some fuel decomposing at low temperatures and bypassing the flame

Let $\chi_{IB} = \chi_I - 0.2$ be the fuel bypassing the flame.

$$\chi_{R} + \chi_{conv} + 0.2 + \chi_{IB} = 1 \text{ or}$$

$$\frac{\chi_{R}}{1 - \chi_{IB}} + \frac{\chi_{conv}}{1 - \chi_{IB}} + \frac{0.2}{1 - \chi_{IB}} = 1$$

$$\zeta_{ch} - \zeta_{0} = \frac{\Delta H_{C} (1 - \chi_{IB})}{(1 + S (1 - \chi_{IB}))h_{R}} \cong \frac{\Delta H_{C}}{(1 + S)h_{R}} \text{ assuming } S \gg 1.$$

$$\frac{\chi_{R}}{1 - \chi_{IB}} = \frac{\zeta_{ch} - \zeta}{\zeta_{ch} - \zeta_{0}} = \frac{\zeta_{ch} - 1}{\zeta_{ch} - \zeta_{0}} + \frac{1 - \zeta}{\zeta_{ch} - \zeta_{0}} = \mu + 0.2$$

$$\chi_{R} = \frac{\zeta_{ch} - \zeta}{\chi_{R}} = \frac{\zeta_{ch} - \zeta}{\chi_{R}} = \frac{\zeta_{ch} - \zeta}{\chi_{R}} = \frac{\zeta_{ch} - 1}{\zeta_{ch} - \zeta_{0}} + \frac{1 - \zeta}{\zeta_{ch} - \zeta_{0}} = \mu + 0.2$$

 $(\mu + 0.2)(1.2)$

 \mathcal{N}_{IB}] -

 (\mathcal{N}_I)

 $\lambda_R -$

Comparison with Experiment

Com

FM Global

FM Global Experiment

General Correlations of Radiant Fractions $\chi_{Rj} = \chi_{Raj} + \delta_{1j} \left(\mu - \mu_{aj} \right) + \delta_{2j} \left(\sqrt{S} - \sqrt{S_{aj}} \right)$ for each fuel "j"

Linear correlations provide a amazingly good fit.

Linear correlations provide a amazingly good fit.

Solving for effective flame radiative temperature $\zeta = T_{Rf} / 1500K$ $\zeta (\chi_R, \mu)$

23

Dimensionless Absorption Coefficient $U = \frac{3.6\sigma T_{\text{Ref}}^4 \kappa}{\overline{c}''}$

From the radiation equation

$$\chi_{R} = \frac{\zeta_{ch} - \zeta}{\zeta_{ch} - \zeta_{0}} = U\left(\zeta^{4} - \zeta_{0}^{4}\right)$$

FM Global Results $U(\Delta H_C, S, \ell_S)$ Rasbash Lecture

$$U = \frac{3.6\sigma T_{\text{Ref}}^4 \kappa}{\bar{\dot{a}}'''}$$

$$U \approx 0.15 \left(\frac{2200}{T_{ad}}\right)^{1/2} + \left[0.037 + 0.33 \ln\left(\frac{0.36}{\ell_{sa}}\right)\right] \left[\sqrt{S} - \sqrt{15}\right] P(x); \quad x = \mu - 0.24$$
$$P(x) = \frac{(x - \mu_L)(x - \mu_H)}{\mu_H^2 \mu_L^2} \left((x + \mu_H)(x + \mu_L) - x^2\right); \quad \mu_L = -0.55; \quad \mu_H = 0.65$$
²⁵

- Rayleigh-Taylor Instabilities drive the combustion of buoyant turbulent diffusion flames.
- Smoke-Point, ℓ_s , correlates χ_I .
- Diagrammatic and Mathematical models for χ_R and χ_I .
- Excellent comparison with experiment for burning in air.
- Correlation of χ_R measurements in general atmospheres.
- Predictions of flame radiation absorption coefficients in terms of ΔH_c , S and ℓ_s .

- 1. Apply existing model to predict:
 - pool fire burning rates
 - wall fire radiant heat transfer rates
- 2. Measure χ_I in general atmospheres using the FPA
- 3. Model soot mantle surrounding very large pool fires
- 4. Measure & model effect of wind on pool fires burning rates