

A posteriori Modelling of the Dalmarnock Fire Tests

Wolfram Jahn, Davíð Snorrason, Guillermo Rein and José L. Torero

w.jahn@ed.ac.uk

The University of Edinburgh

Why do Fire Modelling?

Fire Modelling has gained special interest after events of 9/11.

- Fire Modelling has gained special interest after events of 9/11.
- Reconstruction of fire scenarios is difficult, since not enough data are available. Generally smoke detectors and CCTV are the only "measurements".

Motivation

- Fire Modelling has gained special interest after events of 9/11.
- Reconstruction of fire scenarios is difficult, since not enough data are available. Generally smoke detectors and CCTV are the only "measurements".
- Unkown room-layout complicates further the recreation of fire scenarios. WTC simulations were made based largely on visual recordings of external events.

Round-Robin "blind" study showed that blind predictions of realistic fire scenarios are not possible...

Motivation

- Round-Robin "blind" study showed that blind predictions of realistic fire scenarios are not possible...
- To what degree fire scenarios can be reproduced, if full access to all kind of measured data is available.

Motivation

- Round-Robin "blind" study showed that blind predictions of realistic fire scenarios are not possible...
- To what degree fire scenarios can be reproduced, if full access to all kind of measured data is available.
- ✓ Evaluate which variables have the most important impact on the course of the simulation which variables would have to be assimilated in a super-real-time simulation → FireGrid.

Fire Models

Field modelling has been displacing Zone models.

Fire Models

- Field modelling has been displacing Zone models.
- CFD fire modelling of compartments has been a huge challenge for scientists. Still no "complete" CFD code for fire available.

Fire Models

- Field modelling has been displacing Zone models.
- CFD fire modelling of compartments has been a huge challenge for scientists. Still no "complete" CFD code for fire available.
- So far validation of CFD codes for fire based on simple enclosure fires, very few "realistic" scenarios have ever been modelled.

Key differences :

Real Building

Key differences :

- Real Building
- Realistic layout \rightarrow real fuel load.

The experimental compartment

Sofa with Bin

Table of major events during the tests

Major events Observed	Time from Ignition (s)
Ignition	0
Bookcase ignites	275
Fire engulfes bookcase (flashover)	300
Compartment window breakage (NW Pane)	801
Extinction	1140

Ignition Source

Sofa laboratory test provided HRR for same sofa as used in Dalmarnock.

Ignition Source

- Sofa laboratory test provided HRR for same sofa as used in Dalmarnock.
- UoE laboratory test together with other laboratory tests (NIST) \rightarrow ignition source.

Fire Growth

Three possible approaches :

Fire Growth

Three possible approaches :

prescribed :

Fire Growth

Three possible approaches :

- prescribed :
 - t^2 -HRR for growth phase

Fire Growth

Three possible approaches :

- prescribed :
 - t^2 -HRR for growth phase
 - Imposed Overall HRR (adding individual HRR)

Fire Growth

Three possible approaches :

- prescribed :
 - t^2 -HRR for growth phase
 - Imposed Overall HRR (adding individual HRR)
- predicted :

Fire Growth

Three possible approaches :

- prescribed :
 - t^2 -HRR for growth phase
 - Imposed Overall HRR (adding individual HRR)
- predicted :
 - Flame spread based on Material properties

Fire Growth

 t^2 -Fire during growth phase :

Fire Growth

 t^2 -Fire during growth phase :

Many different items in the room

Fire Growth

 t^2 -Fire during growth phase :

- Many different items in the room
- Parameters of the t²-Fire cannot be related to items in the room

Fire Growth

Imposed Overall HRR :

Fire Growth

Imposed Overall HRR :

Fire Dynamics Simulator (FDS) → injection of combustible gases. They burn when they meet the right fuel-oxygen mixture.

Fire Growth

Imposed Overall HRR :

- Fire Dynamics Simulator (FDS) → injection of combustible gases. They burn when they meet the right fuel-oxygen mixture.
- In ventilation controlled fire, burning occurs outside (due to the lack of oxygen).

Fire Growth

Imposed Overall HRR :

- Fire Dynamics Simulator (FDS) → injection of combustible gases. They burn when they meet the right fuel-oxygen mixture.
- In ventilation controlled fire, burning occurs outside (due to the lack of oxygen).
- No flames in the compartment → Flame location decoupled from pyrolyzate fuel → unphysical
 results.

Fire Growth

Results using Totally Prescribed HRR :

Fire Growth

Results using Totally Prescribed HRR :

Fire Growth

Results using Totally Prescribed HRR :

Grid

Fire Growth

Predicted Flame Spread :

Fire Growth

Predicted Flame Spread :

 Simulate the entire fire growth starting with a "virtual match".

Fire Growth

Predicted Flame Spread :

- Simulate the entire fire growth starting with a "virtual match".
- Involved phenomena too complex \rightarrow not yet applicable.

Fire Growth

Predicted Flame Spread :

- Simulate the entire fire growth starting with a "virtual match".
- Involved phenomena too complex \rightarrow not yet applicable.

Practical way : Somewhere between fully prescribed and predicted

Fire Growth

Fire Growth

Fire Growth

Fire Growth

Fire Growth

Fire Growth

Rest of the furniture burns according to material properties

Other Parameters

Other Parameters

• Boundary conditions \rightarrow Wind.

Other Parameters

- Boundary conditions \rightarrow Wind.
- Ventilation conditions (window breakage).

Other Parameters

- Boundary conditions \rightarrow Wind.
- Ventilation conditions (window breakage).
- Ignition temperature for other items in the room.

Results – Averaged Quantities

Best input found – Partially Prescribed HRR

Results – Averaged Quantities

Best input found – Partially Prescribed HRR

Results – Averaged Quantities

Best input found – Partially Prescribed HRR

Results – Field Temperatures

Results – Field Temperatures

 A priori blind simulations do not work in "realistic" fire scenarios.

Conclusions

- A priori blind simulations do not work in "realistic" fire scenarios.
- A posteriori simulations aided by measurements can reach reasonable agreement with observed fire dynamics.

NIVERS NOTIONEUR

Conclusions

- A priori blind simulations do not work in "realistic" fire scenarios.
- A posteriori simulations aided by measurements can reach reasonable agreement with observed fire dynamics.
- Sensor data is crucial to capture critical events during the fire (secondary ignition, flashover time etc...) and to estimate proper boundary conditions (wind, ventilation conditions).

Prescribed HRR does not work in "realistic" post-flashover fire scenarios.

Conclusions

- Prescribed HRR does not work in "realistic" post-flashover fire scenarios.
- This work is a validation of the input file, not of the model → for a different scenario the entire work has to be repeated.

Conclusions

- Prescribed HRR does not work in "realistic" post-flashover fire scenarios.
- This work is a validation of the input file, not of the model → for a different scenario the entire work has to be repeated.
- It is a very difficult process, many simulations had to be run in order to set up the input file
 → time consuming and never-ending.

Any Questions ?

Any Questions ?

Any Questions ?

